
libqc++ Documentation
Release 0.4.0-11-gc6ce70b-dirty

Kevin Murray

May 22, 2017

Contents

1 libqcpp Applications 3
1.1 Trimit . 3

2 Trimit usage tutorial 5
2.1 Quality control on Arabidopsis reads . 5

3 libqcpp API 9
3.1 Overview . 9
3.2 Streams . 9
3.3 Processors . 10

4 Developer documentation 13
4.1 Compiling static binaries . 13

5 Indices and tables 15

i

ii

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

Contents:

Contents 1

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

2 Contents

CHAPTER 1

libqcpp Applications

Libqcpp ships with some applications built using the library.

Contents

• libqcpp Applications

– Trimit

* QC Steps

* Usage

Trimit

Trimit ties together several common QC measures applied to short read sequencing data. It works with paired end
Illumina and similar sequencing experiments.

QC Steps

• Measure per-base quality scores

• Trim/Merge reads: does a global alignment between read pairs to detect read-through. Read pairs from frag-
ments less than the read length are trimmed at the fragment length, discarding the second read. Read pairs from
fragments that are longer than the read length but less than twice the read length are merged. Read pairs from
fragments longer than twice the read length are not modified.

• Windowed quality control: a sliding-window based quality score trimmer, which uses a slightly improved ver-
sion of the sickle trimming algorithm.

• Optional length filtering and/or truncation

3

https://github.com/najoshi/sickle

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

Usage

See trimit -h.

4 Chapter 1. libqcpp Applications

CHAPTER 2

Trimit usage tutorial

Contents

• Trimit usage tutorial

– Quality control on Arabidopsis reads

* QC measures

* QC reports

* QC-ing the whole sample

Quality control on Arabidopsis reads

This example is from the 1001 genomes project. We will operate on a small set of reads extracted from one sample
(SRR1945463).

This tutorial only requires trimit and wget. Trimit can be obtained from github and then installed (from source of
pre-build binaries) according to the installation instructions on github. wget should already be installed on any modern
GNU/Linux operating system (sudo apt-get install wget on Debian or Ubuntu).

First, we need to download and extract the prepared data.

wget -qO - https://github.com/kdmurray91/libqcpp/raw/master/docs/tutorial-data.tar.gz
→˓| tar xzv

The following files should have been created:

• first-1000.fastq: The first 1000 read pairs from this sample.

• has-adaptors.fastq: A read pair whose insert size is less than the read length, and hence has adaptors in
reads.

5

http://www.cell.com/cell/abstract/S0092-8674%2816%2930667-5
https://github.com/kdmurray91/libqcpp#installation

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

• trimmable.fastq: a read pair with low base quality sequences

• mergeable.fastq: a read pair that can be merged

Now, we will QC the first 1000 read pairs using trimit

trimit first-1000.fastq > first-1000-defaults.fastq

That command uses the default values for minimum quality score (25) and minimum read length of reads (1bp, i.e. no
filtering). These can both be adjusted:

trimit -q 30 -l 50 first-1000.fastq > first-1000-q30l50.fastq

QC measures

The files has-adaptors.fastq, trimmable.fastq and mergeable.fastq demonstrate the main modes
of operation for trimit.

This read pair's insert size is quite small, meaning that there are
adaptors in the sequences. This results in a single small read containing
the consensus of the overlapping reads.

trimit has-adaptors.fastq

This read pair's insert size is larger than the read length, but smaller
than twice the read length. This means the pair can be merged into a single
fragment-length read.

trimit mergeable.fastq

This read pair has reads with 3' ends whose base quality is low, and are therefore
trimmed from the reads. This results in two shorter reads.

trimit trimable.fastq

QC reports

Trimit (and libqcpp) can prepare YAML-formatted reports on QC processing steps.

trimit -q 30 -l 50 -y report.yml first-1000.fastq > first-1000-q30l50.fastq

less report.yml

This report contains details of all processing steps, including a summary of the number of reads trimmed and merged,
and of the per-cycle quality of all reads.

QC-ing the whole sample

If you wish to QC the entire sample these reads come from, please use the following commands.

6 Chapter 2. Trimit usage tutorial

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

wget -O reads.sra https://sra-download.ncbi.nlm.nih.gov/srapub/SRR1945463

Dump a fastq file
fastq-dump \

--split-spot \
--skip-technical \
--stdout \
--readids \
--defline-seq '@$sn/$ri' \
--defline-qual '+' \
reads.sra > reads.fastq

trimit reads.fastq > reads_qc.fastq

ALTERNATIVELY, one can pipe the reads directly into trimit:
fastq-dump \

--split-spot \
--skip-technical \
--stdout \
--readids \
--defline-seq '@$sn/$ri' \
--defline-qual '+' \
reads.sra \

| trimit - > reads_qc.fastq

2.1. Quality control on Arabidopsis reads 7

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

8 Chapter 2. Trimit usage tutorial

CHAPTER 3

libqcpp API

Contents

• libqcpp API

– Overview

– Streams

– Processors

* AdaptorTrimPE

* WindowedQCTrim

* PerBaseQuality

* ReadLenFilter

* ReadLenCounter

* ReadTruncator

Overview

libqcpp’s API is built around two concepts: Stream and Processors.

Streams

ReadStreams are streams of sequence reads. These streams parse reads from or write reads to a file or stream.
ReadInputStream and ReadOutputStream do so without any manipulation. A ProcessedReadStream

9

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

processes reads using a pipeline of processors. ThreadedQCProcessor is a high-level, multi-threaded read pro-
cessor that reads from and writes to files directly. Streams can report, as member variables or as a YAML report,
statistics on reads that have been parsed or written.

Processors

Processors mutate or calculate statistics on a read or read pair. They may also report statistics on all reads they have
processed in their lifetime, as member variables or as YAML reports.

The following processors are implemented (shown with constructor arguments).

AdaptorTrimPE

AdaptorTrimPE(const std::string &name, int min_overlap=10,
const QualityEncoding &encoding=SangerEncoding);

Aligns a read pair to each other, and detect either adaptor read-through, or read overlap. Operates only on paired
reads. Yields single ended reads if the read pair is either shorter than the read length (thus each read contains adaptor
sequence) or the read ends overlap.

WindowedQCTrim

WindowedQualTrim(const std::string &name, int8_t min_quality,
size_t min_length, size_t window_size=0,
const QualityEncoding &encoding=SangerEncoding);

Uses a sliding-window based approach to trim reads at the point where base quality decreases below a threshold. Reads
are trimmed at the first position at which a window’s mean base quality is below min_quality. The 5’ end of a
read is also trimmed. Reads less than min_length bases long are removed from the stream. The window size may
be set using window_size; a window_size value of 0 causes the window length to be 10% of the read length.

PerBaseQuality

PerBaseQuality(const std::string &name,
const QualityEncoding &encoding=SangerEncoding);

Records statistics on per-cycle quality across all read sets, reporting the distribution of base quality scores for each
cycle.

ReadLenFilter

ReadLenFilter(const std::string &name,
size_t threshold = 1,
const QualityEncoding &encoding=SangerEncoding);

Filters reads less than threshold bases out of a stream.

10 Chapter 3. libqcpp API

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

ReadLenCounter

ReadLenCounter(const std::string &name,
const QualityEncoding &encoding=SangerEncoding);

Counts the length distribution of all reads.

ReadTruncator

ReadTruncator(const std::string &name,
size_t threshold=64,
const QualityEncoding &encoding=SangerEncoding);

Truncates reads to threshold bases long, and removes reads from the stream less than threshold bases long.

3.3. Processors 11

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

12 Chapter 3. libqcpp API

CHAPTER 4

Developer documentation

Contents

• Developer documentation

– Compiling static binaries

Compiling static binaries

make -f src/Makefile.static

13

libqc++ Documentation, Release 0.4.0-11-gc6ce70b-dirty

14 Chapter 4. Developer documentation

CHAPTER 5

Indices and tables

• genindex

• search

15

	libqcpp Applications
	Trimit

	Trimit usage tutorial
	Quality control on Arabidopsis reads

	libqcpp API
	Overview
	Streams
	Processors

	Developer documentation
	Compiling static binaries

	Indices and tables

